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1 Introduction

It is a bright summer day in the year 1956. Eleven scientists and mathematicians gather at a college

in Hanover, New Hampshire. The have the entire floor of the Dartmouth Mathematics department

to themselves. They start discussing about symbolic representations and debating over inductive and

deductive systems. It may seem like a rather innocuous meeting to them, but what they do not know

is, this very event is to be known to mankind as the birth of Artificial Intelligence (AI). The likes of

Claude Shannon, Marvin Minsky & Herbert Simon were in that very room. It was the first time in

history when a group of international & prominent experts in diverse fields came together to discuss

the study of AI. Their vision and initiative have come a long way to mould into the AI we see today.

With the new invention of computer systems that could perform calculations multiple times faster

than humans, it seemed like the next natural step. Promises of robotic assistants, artificial reasoning,

flawless natural language processing and conscious minds were made and many in the 60s and 70s

were optimistic of these goals. However, people waited and waited and little was delivered. The AI

winter (a period with a lack of funding and optimism in AI research) eventually came in the 1970s

and stuck around for a long time. Many back then attribute this to inferior computational capabilities

and the lack of any visible progress in AI.

However, this changed very quickly in the 2010s when the computational power in processors finally

caught up to the deep learning methods developed by statisticians and computer scientists. The deep

learning revolution paved the way for the new AI wave we see today. Companies and Institutions

use object detection, natural language processing and prediction models all the time to save costs

and make better decisions. Millions and Billions of dollars are spent to optimise systems with deep

learning and AI. Switching to the field of mechanical engineering, there have also been numerous

developments in robotic and autonomous systems. The bridge between mechanical engineering and

artificial intelligence is closing up everyday. The upheaval of AI and deep learning into hardware and

mechanical systems has become the bleeding edge of technological innovation.

As students of this age with a keen interest in mechanical engineering and computer science, we aim

to embrace the best of both worlds in this project. Our objective is to design a real-time system and

training setup to train an artificial agent to control & fly a Flapping Wing Micro-Aerial Vehicle (MAV).

This report will highlight the prerequisites: theory of reinforcement learning, hardware training setup,

casting the problem into a Markov Decision Process & methods of training. A computationally

intelligent agent will be given the power to actuate the controls of the MAV and learn to fly it with a

deep reinforcement learning algorithm. Figure 1.1a & 1.1b show the CAD model and actual physical

model of the MAV. The wings of the MAV can be controlled using two independent motors and roll,

pitch & yaw control can be achieved by tilting the wings. The tilt can be controlled by two linear
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servos. Refer to our ME3103 design report for the full details of the mechanical design and testing of

the MAV. In this project, we shall assume that we have a fully functional MAV that can be controlled.

(a) CAD Model
(b) Actual Physical Model

Figure 1.1: MAV referred to in the present project
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2 Deep Reinforcement Learning:

Theory and Algorithm

2.1 Reinforcement Learning

To model the behaviour of the AI, we decided to take a reinforcement learning approach. In the

reinforcement learning framework, we define an agent as an individual entity that can take actions

based on an observed state. We define the state as a description of the thing an agent is controlling

(e.g. position, speed, orientation of a robot). In most reinforcement learning problems, the agent is

usually the same as the thing it is controlling (e.g. grid-world, travelling salesman etc.) hence the

term ”the agent’s state” is commonly used. However, it is not always the case (board games, robotics

etc.), like in this project (explained in section 4.1).

Actions refer to decisions made my the agent to potentially alter the state of what it is controlling.

Given any action taken at a state, the agent always receives an immediate reward. The reward can be

defined in any way where negative means bad, positive means good and 0 means nothing. The reward

structure can be custom defined to suit the purpose of a goal. For instance, if we want the MAV to

fly up, an upward velocity can be given a positive reward. The agent resides in an environment. The

environment is what changes the state of the thing the agent controls based on a given action. We

can define all behaviour of an agent by a sequence of state, action & rewards as shown by the relation

in Figure 2.1.

Figure 2.1: Sequential relationship of state, action & reward

The next step is to make the Markovian assumption of our agent. The Markovian assumption states

that the next state, S′ is only dependent on the current state, S and the action taken in that state,

A. This is means that none of the future states and actions are conditional in the past. The current

state is sufficient to describe the situation of the agent and none of the previous states matter. This

memory-less property is essential to map our MAV agent into a Markov Decision Process (MDP). A
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MDP is a map of states, actions and state-transitions for a given agent & environment. In the case of

the MAV, we will justify the Markov assumption in section 4.2 after defining the states. An example

of a MDP is illustrated as shown in Figure 2.2.

Figure 2.2: Example of a MDP

The MDP in Figure 2.2 shows three possible states the Agent can be in (S1, S2 & S3). In different

states, the agent can take different actions. Each action has different probabilities of reaching different

states. For instance an agent in S3 that takes action A4 will reach the state S1 100% of the time, but an

agent at S2 taking action A1 only has a 0.4 probability of reaching S3 and 60% of the time it will return

to its own state. We refer to these probabilities as the state transition probability, f(S′, A, S) which

is the probability that taking action A at state S will lead to a transition to S′. Like all probability

rules, the sum of probabilities for all existing S′ for a given A & S add up to 1,
∑S′ f(S′, A, S) = 1.

Note that S′ can be the same as S, like the transition S1 −→ A5 −→ S1. I is important to define these

probabilities to represent the stochastic nature of the environment. Taking the same action in the

same state may not always lead to the same subsequent state, mimicking real-world conditions.

We now define the policy. The policy can be thought of as the decision maker of the agent, which is

essentially the probability of choosing action A given S. This is commonly represented as π(A | S).

We are able to define these functions with few variables due to the Markov assumption of MDPs. The

next step is to define the expected reward function with different domains. Equation 2.1 define the

state-dependent expected reward function. Note that R refers to the random variable for reward while

r refers to the scalar reward for this specific equation.
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E[R | S] =
∑
r

rρ(r | s) (2.1)

We can also define a state-and-action dependent reward function as shown in Equation 2.2.

E[R | S,A] =
∑
r

rρ(r | s, a) (2.2)

Finally, we define the four-argument probability function that tells us the probability of getting reward

R in a S −→ A −→ S′ transition as shown in Equation 2.3.

ρ(R,S′ | S,A) = f(S′, A, S) · ρ(R | S′) (2.3)

The next step is to define the notion of return. The return, Gt, can be thought of the total reward

that the agent can get by taking actions and transitioning states in the long run. A discount factor,

γ ∈ [0, 1], is used to indicate to the agent that immediate rewards matter more than rewards in the

future. This is represented in Equation 2.4 where t refers to the current time-step.

Gt = Rt+1 + γRt+2 + γ2Rt+3 + ... =
∞∑
k=0

γkRt+k+1 (2.4)

We can thus define Gt recursively as in Equation 2.5. The equation can be intuitively understood by

realising that the long-term total reward in the current time-step is equal to the reward in the next

time step plus the discounted total long-term total reward in the next time step.

Gt = Rt+1 + γGt+1 (2.5)

Under a given policy, π, we can define the expected long-term rewards, Gt, based on either the ”agent’s

state” only or the ”agent’s state” and action. They are called Vπ(S) and Qπ(S,A) respectively. Both

terms are intuitively understood as the ”goodness” of being in a state, or taking an action in a given

state. The latter is commonly known as the Q-value of taking an action in a given state. Both terms

are mathematically defined in Equations 2.6 and 2.7.

Vπ(S) = Eπ[Gt | S] = Eπ[

∞∑
k=0

γkRt+k+1 | S] (2.6)

Qπ(S,A) = Eπ[Gt | S,A] = Eπ[

∞∑
k=0

γkRt+k+1 | S,A] (2.7)

After some mathematical manipulation based on all the functions and relations defined so far, we

arrive at the famous Bellman equation. Equation 2.8 shows the Bellman equation for Qπ. Note that

A′ refers to the action taken in the subsequent time-step.
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Qπ(S,A) =
∑
S′,R

ρ((R,S′ | S,A)[R+ γ
∑
A′

π(A′ | S′)Qπ(S′, A′)] (2.8)

The important part of the Qπ Bellman equation is the recursive relation between Qπ(S,A) and

Qπ(S′, A′) which will come in handy for the Q-learning algorithm (described later on).

Now that we have defined the basic mathematics of reinforcement learning, we now define the goal.

The aim of reinforcement learning is to find an optimal policy, π∗(A | S), that gives the maximum

possible long-term discounted reward. For the purposes of this project, we focus only on Qπ(S,A)

instead of Vπ(S). Hence we aim to find Qπ∗(S,A). The optimal policy can be defined in a greedy

manner, which is to say that for all actions A for a given state S, the A that provides highest Qπ(S,A)

value is the optimal action to take in any state.

There are numerous approaches to find an optimal policy in reinforcement learning. One philosophy

is using model-based techniques like dynamic programming. However, such an approach requires the

entire MDP to be known. For many real-time physical systems like the MAV, finding the model

is incredibly difficult and can be deemed impossible. The best approach would be to use temporal

difference. The most popular and effective algorithm is known as Q-learning. This algorithm tracks

a series of state, action, rewards & aims to learn the Qπ(S,A) for all state-action pairs. A Q-table

is created with every row being a state and every column being an action. The Q-learning algorithm

is able to update its Qπ(S,A) values after every time step, where it uses a rollout of S,A,R, S′, A′.

As seen in the Bellman equation, there is a mathematical link between the Qπ(S,A) values of state

and actions in consecutive time steps. The update rule for Q learning is derived from the Bellman

equation and based on a learning rate update of Q values. A learning rate update means that the

updated value of a quantity is equal to the sum of a portion, α, of the new value and (1 - α) of the

old value. The update rule is as shown in Equation 2.9.

Q(St, At)←− Q(St, At) + α[Rt+1 + γmax
A′

Q(St+1, A
′)−Q(St, At)] (2.9)

During training, at every time-step, the agent usually chooses a greedy action (as defined earlier) based

on its state and carries it out. However this bring about the dilemma of exploration and exploitation

in reinforcement learning. Taking the greedy action is like an agent exploiting its sense of the optimal

action. However, if one only takes greedy actions, they may miss out on many other possible actions

that are potentially more optimal. Hence there is a need for exploration, where the agent will choose

a random action and execute it. The agent cannot explore too much as learning will slow down.

Hence there must always be a fine balance between exploration and exploitation. This concept is

universal across all domains and algorithms of reinforcement learning and is a fundamental aspect of

any training process. We can define ε, which is the probability for an agent to take a random action in

any time-step. The general technique that one usually employs is to start by exploring heavily at the

start (ε = 1), as the agent is yet to see most existing states. Then as the training improves and the

agent learns, it can start to exploit more and the ε reduces to virtually 0. In the case of this project,

the algorithm used employs this idea of exploration in a different way.
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Understanding the intuition behind the mathematics of basic reinforcement learing and Q-learning

is only part of the theory that we need to start training the MAV with AI. One big downside of

Q-learning is that when an agent has thousands or millions of possible states and actions, the Q table

becomes impractically large. This especially the case as Q-learning an other traditional reinforcement

learning algorithms make the assumption that all actions and states are discrete (As seen in the MDP

in Figure 2.2). However, in special cases like this project, both state and actions (Chapter 4) are in the

continuous space. Hence, there is a need to replace the Q table with a value function approximator.

This is how we bring deep learning into the picture.

2.2 Deep Learning

As stated in the previous section, for most realistic reinforcement learning problems, a value function

approximator is required to estimate the value function. The value function approximator must be

able to generalise across seen states / state-action pairs to unseen states / state-action pairs. As neural

networks are found to be universal function approximators from work of Hornik et al. [1], they are

selected to be the value function approximators for most deep reinforcement learning problems and are

the staple architecture utilised for most state of the art deep reinforcement learning algorithms. For

example, by incorporating neural networks to Q-learning algorithm as stated in the previous section

with the concept of a experience replay buffer to be further elaborated, the resultant algorithm is

obtained is the Deep Q-Learning (DQN) algorithm by Mnih et al. [2] which was one of most notable and

successful early deep reinforcement learning model. Models trained using the DQN on seven Atari 2600

games from the Arcade Learning Environment was found to outperform all previous approaches on six

of the games and surpasses a human expert on three of them. By referring the neural network value

function approximator with weights θ as a Q-network, the Q-network can be trained by minimising a

sequence of loss functions Li(θi) that changes at each iteration i as shown in equation 2.10, where ρπ

is the state visitation distribution for a policy π and E is the environment.

Li(θi) = ES∼ρπ ,A∼π,R∼E [(yi −Q(S,A|θi))2]

yi = ES′∼E [r(S,A) + max
A′

Q(S′, A′|θi−1)|S,A]
(2.10)

It is important to note that the weights from the previous iteration, θi−1, are held constant when

optimising the loss function,Li(θi), and that the targets are dependent on θ unlike supervised learning.

Given that neural networks are differentiable function approximators, by differentiating Li(θi) with

respect to θi, the following gradient as shown in equation 2.11 is obtained.

∇θiLi(θi) = ES∼ρπ ,A∼π,R,S′∼E [r(S,A) + max
A′

Q(S′, A′|θi−1)−Q(S,A|θi))∇θiQ(S,A|θi)] (2.11)

It can be observed that the algorithm learns off-policy givens that it follows a behavioural policy, π,

to ensure adequate exploration, while learning about the greedy policy given that the argmax was

used in the determining the gradient as shown in equation 2.12. The behavioural policy is typically
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an ε-greedy policy where the greedy strategy is followed probability 1− ε and selects a random action

with probability ε. With the gradient, ∇θiLi(θi), gradient descent (e.g. stochastic gradient descent),

can be utilised to update the Q-network parameters, θ, through back-propagation to minimise Li(θi)

as shown in equation 2.12, where α is a step-size hyperparameter known as the learning rate.

∆θi = −α∇θiLi(θi)

θi+1 ←− θi + ∆θi
(2.12)

In the scenario where weights, θ, are updated after every time-step and the expectations are replaced by

single samples, it can be observed that the resultant algorithm is the Q-learning algorithm with neural

networks. However, given that stochastic gradient descent using single samples is extremely sample

inefficient despite its simplicity, DQN utilises a technique known as experience replay where the agent’s

experiences at each time-step, Et = (St, At, Rt, St+1), are stored in a replay buffer, D = E1, E2 . . . EN .

Hence in prose, the DQN algorithm generally involves taking action, At according to ε-greedy policy,

storing experience Et = (St, At, Rt, St+1) in replay buffer, D, and sampling random mini-batches of

experiences from D to compute Q-learning targets using θi−1. Thereafter, the updated loss function

is optimised as shown in equation 2.13 before performing a variant of stochastic gradient descent (e.g.

RMSPROP, Adam).

Li(θi) = ES,A,R,S′∼D[(yi −Q(S,A|θi))2] (2.13)

2.3 Deep Deterministic Policy Gradients (DDPG)

2.3.1 Policy Gradient

The algorithms stated in previous sections have been value based, where the policy is generated

directly from the Q values generated from the value function approximator that is the Q-network (e.g.

greedy, ε-greedy). While the merits of value based reinforcement learning have been exemplified by the

example of the DQN in the context of the Atari games, it is important to note that Atari environment

is considerably much simpler that reality given that the action space of the game is discrete, constraint

by the inputs of the joystick for the Atari. However, in the context of the MAV, the action space is

continuous given that the inputs for the motors and linear actuators are real numbers. Given that

in value based learning, a Q value must be attributed to a specific state-action pair, it is practically

unfeasible to represent the entire action space through Q values as that would require an infinite

number of Q values as outputs of the Q-network. To address this problem, a possibility would be to

manually discretise the action space such that the number of actions are reasonably finite. Naturally,

the apparent drawback of such a solution would be the fact that the methodology of discretisation

(e.g. number of discrete states, the discrete actions itself) may inherently remove the optimal policy

from the action space. In the worst case, the agent may fail to perform at all instead of performing

sub-optimally. In the context of the MAV, it is possible that by discretising the action space manually,

it would have been impossible for the MAV to take flight no matter how the model is trained.
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Given the stated constraints of value based reinforcement learning, another class of reinforcement

learning algorithms that are called the policy based learning algorithms are considered. Its advantages

over value based reinforcement learning are the fact it has better theoretical and empirical convergence

properties as well as the fact that it can handle high dimensional and even continuous action spaces.

Furthermore, it can learn stochastic policies, which is the generalisation of deterministic policies and

some problems cannot be solved by deterministic policies. However, policy based methods often

converges to local optimum as opposed to a global one and evaluating a policy can be very inefficient

and high variance.

Policy based methods bypasses value learning by directly learning the policy itself and can be seen

as an optimisation problem to find the parameter θ that minimises the cost function J(θ). While

there are approaches that does not utilise gradients (e.g. hill climbing, simplex, genetic algorithms),

greater efficiency is often possible with gradient based methods, hence focusing on policy gradient

reinforcement learning methods. Policy gradients algorithms iteratively search for a local minimum

by descending the local gradient of policy with respect to θ as shown in equation 2.14, where ∇θJ(θ)

is the policy gradient and α is learning rate.

∆θ = −α∇θJ(θ)

θ ←− θ + ∆θ
(2.14)

By assuming that the policy, πθ(S,A) is differentiable when πθ(S,A) > 0 and gradient ∇θπθ(S,A)

is known, the policy gradient can be computed analytically by using the following identity shown in

equation 2.15. where ∇θlogπθ(S,A) is the score function.

∇θπθ(S,A) = πθ(S,A)
∇θπθ(S,A)

πθ(S,A)
= πθ(S,A)∇θlogπθ(S,A) (2.15)

The policy gradient theorem generalises to all MDPs, stating that for any differential policy πθ(S,A)

and cost function J(θ), the policy gradient is as shown in equation 2.16.

−∇θJ(θ) = Eπθ [∇θlogπθ(s, a) ∗Qπθ(s, a)] (2.16)

In the REINFORCE algorithm that uses Monte Carlo gradient descent, the return Vπ(S) from a

terminated episode is used as the unbiased sample of Qπθ(s, a). However, it was found that despite

using unbiased value estimate, high variance is still exhibited in the policy gradient, which slows down

learning. In addition, the learning process is extremely computationally expensive, requiring millions

of episodes for convergence for simple tasks. Given the issues faced by Monte Carlo gradient de-

scent, Actor-Critic policy gradient algorithms are introduced. Actor-Critic policy gradient algorithms

maintains two sets of learned parameters as follows: 1) Critic: Updates ω parameters to estimate

a value function (e.g. Qπθ(s, a) ≈ Qω(s, a)), 2) Actor: Updates θ parameters to estimate policy

πθ(s, a). Actor-Critic policy gradient approaches follow an approximate policy gradient as shown in

equation 2.17 below.
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−∇θJ(θ) ≈ Eπθ [∇θlogπθ(s, a)Qω(s, a)]

∆θ = α ∗ ∇θlogπθ(s, a)Qω(s, a))
(2.17)

2.3.2 DDPG Algorithm
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With the introduction of Actor-Critic policy gradient algorithms in the previous section, the DDPG

algorithm can now be elaborated in detail. DDPG is an actor-critic, model-free algorithm based

on the deterministic policy gradient that can operate over continuous action spaces developed by

Lillicrap et al. [3]. It consists of four fully connected deep neural networks (FCDNN), namely the

actor FCDNN, critic FCDNN, target actor FCDNN and the target critic FCDNN, and a replay buffer.

With inspiration from the DQN algorithm, the replay buffer have the same functionality to store the

agent’s experiences at each time-step, Et, and the terminal flag as well. The replay buffer has a finite

space (e.g. 1000000 episodes) and is based on a first in first out principle in replacing experiences

stored in replay buffer. During the training process of the FCDNNs, a specified batch of the experiences

stored in the replay buffer will be randomly sampled.

The actor FCDNN takes in global state observations as its inputs, where the input forward propagates

through the FCDNN with three hidden layers of hidden units 512, 256, 128 respectively as shown in

Figure 2.3. The number of outputs of the actor FCDNN corresponds to dimension of the action space

of the reinforcement learning problem and have the Tanh as the activation functions. Given that the

Tanh activation function is bounded between ±1, the outputs of the actor FCDNN can be scaled by

a specific constant to alter the range of the action variables in the continuous action space. The critic

FCDNN takes in global state observations concatenated with the corresponding actions taken by the

agent sampled from the replay buffer. The input forward propagates through the FCDNN with three

hidden layers of hidden units 512, 256, 128 respectively to give a single output of the state-action

value, Qω(s, a) as shown in Figure 2.4 above. The target actor FCDNN and target critic FCDNN

follows an identical architecture with the actor FCDNN and critic FCDNN respectively. The two

target FCDNNs are not utilised during experience gathering but for training of the actor and critic

FCDNNs. The weights of each hidden unit in the target FCDNNs with are updated with based on a

parameter, τ , with respect to its corresponding FCDNN counterpart as shown in equation 2.18 below.

θ′target actor = τθactor + (1− τ)θtarget actor

ω′target critic = τωcritic + (1− τ)ωtarget critic
(2.18)

On initialisation of the FCDNNs, the target FCDNNs are a hardcopy of their original counterparts,

i.e τ = 1. After every subsequent training of the actor and critic FCDNNs, the target FCDNNs

undergoes a softcopy update (e.g. τ = 0.005). The training losses of the actor and critic FCDNNs are

stated in equation 2.19 below.

−∇θJ(θ) ≈ 1

N

∑
i

∇AQωcritic(S,Aactor)∇ωactorµωactor(S) (actor)

δωcritic = r + γQωtarget critic(S
′, A′target actor)−Qωcritic(S,A) (critic)

(2.19)

For the critic losses with experiences from the replay buffer, the action of the target actor FCDNN

from S′, A′target actor, is first obtained. From S′ and A′target actor, Qωtarget critic(S
′, A′target actor) can be

obtained from the target critic FCDNN, from which added to reward, r, gives the TD target. The

critic loss is hence the mean squared error, δ2ω, between the TD target and the state-action value,

Qωcritic(S,A), from the critic FCDNN. For the actor losses, the action selected with an updated policy
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from the actor FCDNN, Aactor, is obtained. The actor losses are then the gradient of the state-action

value, Qωcritic(s,Aactor), with respect to Aactor using S and Aactor from the critic FCDNN multiplied

with the gradient of actor FCDNN’s policy output given S input, µωactor(S), with respect to the

actor FCDNN’s parameters, ωactor. Figure 2.5 highlights the pseudocode extracted from the work of

Lillicrap et al. [3].

Figure 2.5: Pseudocode for DDPG
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3 MAV Training setup

Figure 3.1: Closed-loop feedback system of the MAV training setup

In this chapter, the report will understand how information about the flapping wing MAV flows in the

form of a closed-loop feedback system; the feedback system allows the reinforcement learning agent to

know its current state, take appropriate actions informed by the neural network and then update the

following flapping wing MAV’s next state. Figure 3.1 clearly shows the flow of information as a cycle.

Beginning at the Flapping Wing MAV, kinematic data recorded by the infrared Vicon cameras. This

data passes into our integrated framework, managed by the Robot Operating System (ROS). In the

integrated framework, the kinematic data is encoded as position, velocity, and acceleration in SI units

according to the cartesian grid illustrated virtual reality peripheral network software. The data contin-

ues into the machine learning program (specifically, DDPG). The outputs of the DDPG program feeds

into the Arduino microcontroller, which controls the remote transmitter. The transmitter controls the

Flapping Wing MAV through a receiver on board, thus completing the information feedback loop.

The rest of the chapter covers each section of the MAV training setup in depth.
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3.1 MAV setup

The following design considerations must inform the design of the training setup of the Flapping Wing

MAV:

• Training setup should not restrict the ability to train the MAV.

• Training setup should not restrict the flight of the MAV.

• Training setup should capture as much helpful information about the MAV as possible.

• Safety in training as repairing the MAV is a difficult task.

Figure 3.2: String and Vicon balls attached to the Flapping Wing MAV

We decided that training the Flapping Wing MAV in a Vicon room with the aid of a hanging string

best conforms to the design considerations. We chose to use the Vicon room as a Vicon system is the

most effective at recording positional data of the MAV in real-time, with minimal hindrance to the

flight dynamics of the MAV. For the Vicon system to capture positional data, small reflective balls

or “Vicon balls” must be placed around the MAV. These Vicon balls are incredibly light (less than 1

gram in total) and relatively small. The light weight of the Vicon balls allows the MAV to fly with

reduced sluggishness, and their small size decrease aerodynamic drag on the MAV. By recording flight

position using external Vicon cameras as opposed to onboard sensors, we prevent any errors caused

by odometry drift.

A string was used to hang the Flapping Wing MAV from the ceiling, preventing the MAV from taking

severe damage if it drops out of the air while in flight. The length of the string is slightly shorter than

the ceiling’s height from the floor, allowing the MAV to hang just above the ground at its lowest point.

The string was chosen to ensure the MAV’s safety as opposed to other methods like using cushions to

break the fall of the MAV as the impact of the drop transfers into the MAV frame. The MAV frame
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made of thick carbon fibres and spars has a higher yield point than weaker structures like the wings.

Hence, it is less likely that the MAV is damaged when dropped.

There are a few disadvantages to using the string to break the fall. Firstly, the MAV has to carry

the string in flight, increasing its weight and sluggishness in flight. Secondly, the string restricts the

domain of flight to a hemisphere with a radius equal to the length of the string centred on the point

it connects to the ceiling. This domain restriction means that the machine learning algorithm has less

freedom to explore and learn how the MAV performs in flight as it has to give up control when the

MAV approaches the edge of the hemisphere. Nonetheless, we decided that the safety of the MAV

outweighs these disadvantages as repairing the MAV is difficult and time-consuming due to the small

parts involved. Furthermore, any permanent damage to the MAV could change the flight dynamics,

rendering previously trained machine learning models less effective as these models would be working

on a different flight system.

3.2 Vicon system

The Vicon room is a large open room with infrared motion capture cameras placed all around the

edges of the room. These cameras emit infrared throughout the room. Reflective Vicon balls placed

on the Flapping Wing MAV reflect the infrared rays into the cameras, allowing the Vicon system to

capture the MAV’s motion. The Vicon balls are made of reflective tape taped around a hollow 3-D

printed ball, and at least three Vicon balls should be placed around the MAV in a non-symmetric

manner. Finally, Wi-Fi is used to transfer the motion data to the Virtual Reality Peripheral Network

(VRPN) in our integrated framework.

One obvious disadvantage of using the Vicon system is that the system restricts flight to the Vicon

room. The benefits of an AI-controlled Flapping Wing MAV include autonomous navigation and

obstacle detection in the real world. While the Vicon system prevents the realisation of such benefits,

we decided that the Vicon system allows us to simplify the difficulties of training the MAV in a

controlled environment. Future works will include training a fully robust model in the Vicon system

before moving on to more “noisy” localisation methods such as inertial sensors and onboard sensors.

3.3 Integrated framework - ROS

To integrate the machine learning program into the Flapping Wing training setup, we chose Robot

Operating System (ROS) to facilitate data transfer in and out of our program. ROS enables us to

easily receive and manipulate the flapping wing MAV’s motion data and send the data as inputs for

the machine learning program. The output of the agent is also easily encoded into data that ROS can

send to microcontrollers.

Another reason we used ROS as our software framework is because ROS follows a modular philosophy

of “complexity via composition”. This philosophy provides two advantages. Firstly, it allows each

team member to work on different sections of the program without the difficulties of integrating each

part together. Secondly, and more crucially, we can swap between different algorithms and training

methods by simply redirecting information flow. This advantage improves our program’s readability
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and modularity, reducing the complicatedness of understanding the lines of code. The following section

will briefly introduce terms commonly used in ROS.

Nodes: ROS nodes are a running instance of a ROS program. Nodes can subscribe to data, manipulate

them, and finally publish them for other ROS nodes. In our project, we will use four nodes, shown in

Figure 3.3 below. Each node has a callback function that runs whenever a message from a subscribed

topic enters a node.

Topics: Nodes publish and subscribe on ROS topics. Topics connect nodes and allow data to pass

from one node to another in the form of messages.

Messages: ROS messages are data structures that hold data so that different nodes can communicate.

Figure 3.3: Nodes and topics of the training setup

3.3.1 VRPN

The VPRN node encodes the Flapping Wing MAV’s motion data and sends the data into our in-

tegrated framework via Wi-Fi, as explained previously. We have subscribed to three topics for our

setup: each sends position, velocity, and acceleration data. The names of the messages are PoseS-

tamped, TwistStamped, and AccelStamped, respectively. These three messages are part of the geometry

messages library. All three messages contain three different information: the header, linear motion

data (position or velocity or acceleration), and angular motion data.

The header contains meta-information about the message. Importantly, it contains the timestamp of

when the message is published. The time is essential for syncing messages together, which will be

explained below.

The linear motion data is encoded with three numbers, x, y, z, each specifying position, velocity

and direction in each cartesian axis respectively. More specifically, PoseStamped describes x, y, z,

TwistStamped describes ẋ, ẏ, ż, AccelStamped describes ẍ, ÿ, z̈.

The angular motion data is encoded differently for position and for velocity and acceleration. Quater-

nions are used for angular position, qx, qy, qz, qw while three numbers x, y, z describes the Euler angles

for angular velocity and angular acceleration. More specifically, PoseStamped describes qx, qy, qz, qw,

TwistStamped describes θ̇, φ̇, ψ̇, AccelStamped describes θ̈, φ̈, ψ̈.

All three messages are transported through different topics for each message type, and our “three-

in-one” node subscribes to the topics. This node uses an approximate time algorithm to read each
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message’s time stamp from their headers, running the node’s callback function only when it has

received three messages (position, velocity and acceleration) with roughly the same timestamp. The

approximate time algorithm ensures that all kinematic data refer to the MAV’s state simultaneously.

This node then publishes all 19 values (3 linear positions, 4 angular positions, 3 linear velocity,

3 angular velocity, 3 linear acceleration, and 3 angular acceleration values) in a custom message

KinematicStamped.

3.3.2 Machine learning

KinematicStamped is subscribed by our machine learning node. The node takes in all 19 values as

inputs and 4 pulse position modulation (PPM) values. These PPM values correspond to the signal

used by the transmitter, with values from 1000 to 2000. These 23 values are the input for the DDPG.

The details of the Deep Reinforcement Learning algorithm can be found in Chapter 2 and Chapter 4.

The machine learning node outputs are 4 PPM signals, which we will send to the transmitter through

the microcontroller. The PPM signal data is packaged in a message called ppmchnls. Lastly, the node

will publish the message to a topic that the Arduino microcontroller subscribes.

3.3.3 ROSSerial

ROSSerial is a protocol for wrapping ROS messages so that messages can be sent over a serial port.

Specifically, we use the library rosserial arduino, allowing us to run ROS on an Arduino. ROSSerial

allows the Arduino to read the ppmchnls message.

3.4 Arduino Microcontroller

On the Arduino, a ROS node subscribes to a topic publishing the ppmchnls message. In the message,

it receives 4 PPM values corresponding to channels one to four on the transmitter. To convert the

PPM value ranging from 1000 to 2000 to an actual PPM value, we used a library called PPMEncoder.

The PPM signal is sent to the transmitter through a mono AUX cable.

The Arduino code is structured in three parts: the setup, the loop and the callback. The setup starts

the MAV in its initial state. We have chosen the initial state as wings flapping equally, and the linear

actuators centred such that the MAV will be at a neutral attitude and altitude (hovering in place).

These values are empirically chosen. While a hovering state is near impossible without an autopilot,

our goal is to allow the initial state to be as close to a hovering state as possible. The setup also starts

up the ROS node.

The looping part of the Arduino subscribes to the topic from the machine learning node and takes in

messages containing the PPM values that the DDPG outputs. When a message enters the node, the

callback function is activated. The callback function encodes the PPM value as a signal and sends the

signal through an output pin.



Chapter 3. MAV Training setup 18

3.5 Transmitter

The transmitter used in this project is a Spektrum NX10. The transmitter is set to instructor mode

to transmit the PPM signal as 2.4 GHz EM waves. In instructor mode, the transmitter accepts the

PPM signal through the AUX cable and emits the EM waves through its antenna. The EM signals

are then picked up by the receiver on the Flapping Wing MAV, thereby completing the feedback loop.
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4 Reinforcement Learning Cast

4.1 Agent & Environment

Understanding the entire hardware & software training setup of the MAV is crucial to the next

important step, the reinforcement learning cast. Now that we have a physical understanding of the

setup and the goals we want to achieve, we can cast this knowledge into the MDP framework as defined

in section 2.1. This is very crucial as the mathematics of reinforcement learning can only justify the

setup if and only if the cast is done properly.

We begin by defining the agent & environment. The agent here is strictly defined as the code running

on the machine learning script of the integrated system running on the laptop. All of the code running

is deterministic (assuming no bugs) & the agent in the code is making all the decisions. This may

seem counter-intuitive, as that means that the environment not only consists the string attached to

the MAV or the physical space in which the MAV can move, but the MAV itself. Although the

MAV is the robot learning to fly, we must recall that the training objective is not for the MAV itself

to fly, but for an agent to control and fly the MAV. As far as the agent is concerned, the MAV is

merely but a vessel that carries out its instructions. Even if the agent was present as a companion

computer on the MAV, the computer chip where the processing occurs would be considered the agent

and all other mechanical, electric and flapping parts are still considered as the environment. Such

a strict definition on agent & environment is necessary as the MAV itself is fully subjective to non-

deterministic behaviour. Recall the need for a state transition probability, f(S′, A, S), as illustrated

in Figure 2.2. Any component of the full system that cannot be confidently deterministic must be

part of the environment which affects f(S′, A, S). The actual MAV does not have a deterministic

behaviour. Components can break and fail in flight, the battery voltage may be too low to sustain

the same level of thrust, the motors may reduce its effectiveness over time and many more unplanned

events can happen. If the wings fail, the S′ achieved from the exact same S & A can be different if

the wings are intact. This is mathematically factored in as part of the state transition probability

that the MAV must learn.

Naturally, a good engineer must do all it takes to reduce the chances of unexpected events, but it is

not possible to consider the MAV a purely deterministic system. One may argue that the state being

recorded from the Vicon system is that of the actual MAV and not the code, and the state describes

the agent’s situation, so why is the MAV not the agent? Although a valid point, we believe that a state

does not precisely describe the situation of the agent, rather it describes the situation of the thing

the agent is trying to control. In this case, the latter is rightfully the MAV. In most reinforcement

learning problems, the agent and the thing the agent is trying to control is usually the same thing,

so such distinctions are not usually necessary. A unique real-time mechanical problem like the one in
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this project brings out the need for the distinction on what a state truly describes. Hence, we define

the MAV as part of the environment.

4.2 State

The state for the MAV can be defined by simply 19 float variables. They are the position x, y, z,

the orientation in quaternions, Qx, Qy, Qz, Qw, the linear and angular velocities, Vx, Vy, Vz, ωx, ωy, ωz,

and the linear and angular accelerations, Ax, Ay, Az, αx, αy, αz. Deciding to use these 19 values as

the state is pretty straightforward. The goal of controlling the MAV to fly is a mechanical objective,

so it makes intuitive sense to use physical characteristics to define the state of the MAV. As MAV

flight is very sensitive to its physical parameters, we believe that velocity & acceleration information

is valuable in describing the MAV completely. Moreover, these are the only 19 values that we can

get from the Vicon system. One could consider doing some feature engineering to reduce the number

of state variables, however 19 inputs into a neural network is comparatively little and takes minimal

computational resources to handle.

One advantage of taking the physical characteristics of a rigid body is that the characteristics are all

we need to sufficiently describe the state of the MAV. No information of the state in the previous

time-steps make a difference to the state of the MAV currently and hence the future state and rewards

of the MAV are not conditional on the past. Hence we can confidently claim that the state of the

MAV follows the Markovian assumption. Therefore, there is no violation to casting this system as a

MDP.

4.3 Actions

Defining the actions cast is the most challenging and interesting. The PPM signal that the Arduino

must send to the transmitter is within a range of 1100µs and 1900µs. 1100µs refers to the lowest value

of a channel and 1900µs is the highest. Hence the latter would mean maximum throttle on the motor

channels. Figure 4.1 shows the electric diagram of the MAV.

Figure 4.1: Electric Diagram of the MAV. 4 Channel receiver is used.
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The diagram shows that the receiver accepts 4 channels and each one these 4 channels are connected

to an actuator (2 motors & 2 linear servos). Hence the Arduino must output four PPM signals within

the range of 1100µs and 1900µs. Therefore the first idea is to have an action space of size 4, that each

select a value between 1100µs and 1900µ. The output of each neuron in DDPG is an output from a

hyperbolic tangent function, η, such that η ∈ [−1, 1]. The conversion from η1 to the PPM1 (where

the subscript 1 refers to the first channel) is displayed in Equation 4.1.

PPM1 = η1
1900µs− 1100µs

2
+

1900µs+ 1100µs

2
(4.1)

This initially seemed like a good idea, however we observed a big drawback when testing the training

setup with the actual MAV. At the start of training, the neural networks have not yet been trained,

hence the agent often chooses rubbish PPM values for the MAV. The agent can command the MAV

to go full throttle in one time step, and then no throttle in the net time step and then back to full

throttle in the subsequent time step. This is possible as the agent can pick any value between 1100µs

and 1900µ in each time-step. This put incredible amounts of stress on the motor which was applying

a lot of torque on the gearbox due to slowing down and speeding up quickly. This meant that there

was a lot of shear force on the connecting components of the gearbox, eventually leading to the failure

of one of them. Figure 4.2 illustrates this very broken component.

Figure 4.2: Damaged Gearbox component from high shear force after agent made
rapid changes to motor speeds

Another aspect of reinforcement learning that one can take for granted is the assumption that the

thing the agent is controlling has had enough time to complete the full action before the next state

is recorded and the next action is sent out. In real-time systems, this assumption does not always

hold as the S,A,R, S′, A′ may have overlap in time. On the software side, the rate at which states are
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recorded is controlled at an optimal rate of 5Hz. Making it too slow can be detrimental as well, as

the MAV may have finished its actuation and any new changes in state may not be attributed to the

action change. This is only relevant for the linear servo as it is a single-use actuation unlike the motor

which is constant actuating above a PPM of 1100µs. Right after the linear servo rotates the wing, the

state should be immediately captured so that the agent accurately determines the S −→ S′ transition

as a result of the linear servo change. Likewise, the next action can be sent out at this exact same

time. The issue with having an agent that can dictate rapidly different consecutive actions is that the

MAV may not even have time to finish actuating, precisely the issue just discussed. Hence using this

approach for actions was deemed unsuitable.

Instead of mapping the DDPG output to the absolute PPM values, we define the output to be

proportional to the change in PPM instead of PPM itself. We call this ∆PPM . Let us define another

constant ζ that is equal the maximum allowable change in PPM between two time-steps. This value

was not tuned for this project, but we can assume a default value of 200µs. ∆PPM1 is simply defined

as in Equation 4.2.

∆PPM1µs = ζη1µs (4.2)

Then the value of PPM1 is updated to PPM1 + ∆PPM1. The updated PPM1 is clipped to ensure

it lies in the range between 1100µs and 1900µ. This revamped action cast performed on the MAV was

observed to be a lot less mechanically stressful on the gearbox and motor.

4.4 Rewards

The rewards structure of any reinforcement learning project can be heavily customised by the human

programmer. This is the one area in which there is the most flexibility, however it is arguably the

most important. The way in which the reward structure is designed is crucial to the agent’s perceived

goal of the training. The incentives and punishments must be clearly drawn out so the agent learns

to control the MAV exactly in the way we want it to. An unclear goal or a mix of multiple goals can

end up confusing the agent.

As we want the agent to control the MAV to fly, we provide a positive reward for upward velocity and

a negative reward if it has a downward velocity. Any additional rewards are purely dependent on the

training methodology applied. The following chapter will detail them and give more insights on the

reward structure to implement.
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5 MAV Training Goals

5.1 Goal 1: Fly with string

The goal of wanting the agent to ”control and fly the MAV” is very vague. In reinforcement learning,

there is no room for ambiguity. Any training objective must be clearly laid out. In method 1, we

propose the goal of the agent controlling the MAV to use the string to gain altitude. By using the

string’s tension, the MAV can achieve circular motion and use a simple increase in throttle to gain

altitiude. This scenario is easy for the MAV to achieve as it does not require the MAV to be stable

in flight to do this. It mostly just has to apply constant full throttle. Figure 5.1 shows an instance of

when the MAV is tugging on the string to gain altitude while moving around the room in a circular

motion.

Figure 5.1: MAV relying on the string’s tension to gain altitude

Indeed, this is not a very useful application of the MAV as it does not achieve true flight. Nonetheless,

this training methodology is a good litmus test of the software written to train the agent to control

and fly the MAV. This is an achievable task and if the agent can learn to accomplish it, it means that

the full MAV training setup is functional and no serious code bugs are in play. Hence, we recommend

this as the first training goal to follow. There are no additional reward functions needed for this goal

as it is a simple task of going up.
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5.2 Goal 2: Fly with and without string

Figure 5.2: Hemisphere of physically possible flight domain and cylinder of
permissible flight domain

One way to achieve an upward motion using reinforcement learning is to restrict the flight of the

MAV to a smaller cylindrical domain inside the hemisphere enforced by the string (See Figure 5.2).

We allow the MAV to use the string’s tension where the surface of the hemisphere and the cylinder’s

domain intersects to a certain height, where the surface of the cylinder and hemisphere intersects.

After a fixed height, we place penalties on the agent when the MAV leaves the cylinder’s domain.

This scenario allows the MAV to explore and gather speed at the bottom of the cylinder, and when

it has sufficient speed, learn to fly without the tension of the string. The reward for altitude climb is

given only after this height.

This method circumvents the problem of Section 5.1, and the MAV will learn to fly upwards without

the string. However, we identified one serious problem: relying on the string at one region of space

and without the string at another will confuse the agent as the environment “physics” changes. This

problem could cause a bias in the neural network, where at lower altitudes, it assumes there is always

an upwards tension to reduce the MAV’s weight.
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5.3 Goal 3: Fly without string

The last method of achieving an upward motion is simply to release the MAV from a reasonable

altitude with no tension in the string and allow the MAV to attempt to fly. The string, in this

context, serves purely as a safety net for the bird to prevent and damages from upon crashing. During

training, the episode is immediately terminated when the bird leverages on the string’s tension at

any given point of time in the flight or leaves from an small arbitrarily specified range best visualised

by the diameter of the cone shown in Figure 5.2. An immediate advantage of the stated training

method would be that the environment “physics” remains constant throughout the training process

unlike the method stated in Section 5.2. In addition, the reason for such strict terminating conditions

is to ensure that only desirable experiences of the MAV are stored in the replay buffer, where the

desirability of the experience is determined by the region in the state space that the MAV is likely to

be in when is attempting to fly upwards (e.g. orientated upright with MAV head facing the ceiling).

The experiences of the MAV going from a desirable state to another desirable state (e.g. state with

increase height and upright orientation) is naturally important. In addition, the experiences of the

MAV going from a desirable state to a undesirable state (e.g. pitching downwards) is also important

as the model needs to learn not to select the combination of actions at the desirable state that led

to to a non-desirable state through reduced rewards from the reward function. However, experiences

where the MAV is struggling to recover from a undesirable state to another undesirable state is not

valuable given that it is a region in the state space where the MAV would not be if it was achieving

its goal of upward flight, hence only serving as noise that hinders learning. Hence, the stated training

method maximises the collection of quality data for training to achieve the desired goal, hence the

most sample efficient and effective method theoretically.
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6 Conclusion

6.1 Summary

In this project, the team has developed the integrated framework from scratch and integrated the entire

system architecture for the closed-loop feedback system of the MAV training setup as illustrated in

Figure 3.1. Firstly, the team has assessed several deep reinforcement learning algorithms on their

suitability in the context of the MAV training and eventually settled for the state-of-the-art policy

gradient reinforcement learning algorithm DDPG. The entire code for DDPG was then developed

from scratch and interfaced with the with the Vicon system and the Arduino microcontroller through

the ROS program, of which is also developed from scratch. Thereafter, the team integrated the

Arduino microcontroller with the transmitter and naturally from the transmitter to the MAV as

well via an on-board receiver. The MAV was also equipped with Vicon balls for the Vicon system

to detect its state, thereby completing the closed-loop feedback system of the MAV training. After

developing training setup, a reinforcement learning cast was performed to fully contextualise entire

problem of achieving flight for the MAV in well defined reinforcement learning terms. In particular,

the methodology of achieving various well defined training goals are detailed and examined for their

merits and disadvantages in the context of reinforcement learning. In essence, the team has developed

all the necessary systems required to for any individual to train the MAV to fly.

6.2 Further studies

Naturally, further studies would definitely involve the actual training of the MAV itself in the system

developed. Only from actual training can the team evaluate the performance of the reinforcement

learning algorithm and develop the necessary changes to the machine learning aspects in order to

achieve the goal of MAV flight in the most efficient manner possible. The necessary changes could

involve hyperparameter tuning (e.g. reward structure, network architecture) for DDPG algorithm or

even the usage of another reinforcement learning algorithm. Furthermore, it is important to note that

the MAV used currently is inherently unstable and it does not have any autopilot nor any control

surfaces on its tail to stabilise it. As a result, manual flight with it is practically impossible as no

human have the sufficient reaction time and capacity to react accordingly to the MAV’s instability.

However, should another MAV that is inherently stable and can be piloted by a human be used, further

studies could involve experimenting with imitation learning, where the human pilot provides the to

”correct” inputs to fly the MAV, of which the experiences are stored in a replay buffer from which the

model can learn from. It is likely that such a method would be significantly more efficient in training

the model as the quality of the experience generated from an experienced pilot is vastly superior to
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that of a randomly initialised reinforcement learning algorithm attempting to learn from exploration

in the early stages of the training. Lastly, should the task of upward flight be achieved, further studies

could involve changing the goal to fly the MAV to a specified waypoint from the original location of

the MAV and hover at that location.
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