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I. INTRODUCTION

One of the major challenges in the 21% century is the development of a consistent energy supply that is able to meet the
world’s growing demand for energy. Given another defining crisis of the 21% century, the climate crisis, the energy supply must
be sustainable as well. However, with the present heavy dependency on fossil fuels, the energy economy at the present state
is far from sustainable. Nevertheless, there have been significant efforts in tackling these immense problems through global
investment from both the private and public sector in various strategies such as renewable energy sources, energy efficiency
as well as novel transportation technology.

A major strategy building towards a clean and sustainable future involves the development of clean and efficient energy
storage systems. From the range of solutions, electrochemical energy storage in the form of rechargeable batteries, in particular
lithium-ion batteries (LIB), have since revolutionized the energy storage industry. Since its market introduction in 1991, LIB
have evolved significantly, with continuously increasing energy density accompanied by decreasing cell costs [1]. Investments
in the research and development of LIB in the recent decades has been largely driven by portable consumer electronics
(e.g. smartphones, laptops), where LIB dominate the small portable battery market. Recently features of LIB include its
implementation as the energy storage system for electric vehicles in the automotive industry as well as for stationary energy
storage capable of storing excess electrical energy at a large scale with low cost [2]-[4].

However, with the intrinsic limitations of LIB, research on alternative promising battery technology is necessary given the
growing differentiated demands for energy storage systems. In the next generation metal ion batteries, various novel battery
compounds with different working ions, monovalent (e.g. Na*, K*) and multivalent (e.g. Mg?*, Ca?*), are proposed and
intensively researched [5], [6]. However, given the wide array of working ions, such as Li, Na, K, Mg, Ca, and Al that
could intercalate with different compounds, the possible battery electrodes are in the order of thousands. Majority of the
electrodes have not been studied given experimental and computational difficulties in performing large chemical and structural
analysis with sufficient accuracy [7]-[9]. Given such circumstances, a machine-learning (ML) approach in building models
with limited computational resources to accurately predict battery electrodes properties is the most efficient way forward [10].
This approach is supported by the availability of databases and physical repositories to the scientific community with regards
to useful material data (e.g. crystal structures, element-level properties) that are vital for ML. Examples of several databases
include Open Quantum Materials Database (OQMD) [11], [12], Materials Project [13], [14] and Automatic Flow (AFLOW)
[15] that are found in the density functional theory (DFT), which is a reasonably established computational quantum mechanical
modelling method that investigates the electronic structure and properties of chemical compounds.

To date, the ML approach have been applied in various aspects of material science. For example, Deml et al. used the
DFT+U-based fitted elemental-phase reference energies (FERE) approach to predict the formation enthalpy of metal-nonmetal
compounds in their ground-state crystal structures [16]. Similarly, Dey et al. utilised an ensemble data mining approach involving
Ordinary Least Squares (OLS), Sparse Partial Least Squares (SPLS) and Elastic Net/Least Absolute Shrinkage and Selection
Operator (Lasso) regression methods coupled to Rough Set (RS) and Principal Component Analysis (PCA) methods to develop
robust quantitative structure — activity relationship (QSAR) type models for band gap prediction [17]. Other applications of ML
models includes crystal structure prediction [18], prediction of metal alloy properties [19], [20] and many others. In this work,
the ML approach is utilised similarly for the prediction of the voltage of novel battery electrodes. The resulting predictive tool
would ideally rely on the minimal basic information that are readily accessible, allowing for a rapid and accurate shortlisting
of potential battery electrodes for further research and experimentation.

II. METHODOLOGY
A. Training data

One of the most important aspects of the implementation of ML material science is the selection of the appropriate input
features used to represent the chemical compound. From the work of Ward et al. that builds on existing strategies found in
literature, the input features of the chemical compound generally fall into 4 distinct categories: 1) stoichiometric attributes, 2)
elemental property statistics, 3) electronic structure attributes, 4) ionic compound attribute [21]-[23]. Stoichiometric attributes
are dependent on the fractions of the element present in the compound irregardless of the element itself. Elemental property
statistics are the statistical attributes (e.g. mean, variance) of the properties of the elemental properties (e.g. atomic number,
atomic radii). Electronic structure properties are the average fraction of electrons from the s, p, d and f valence shells between
all present elements and ionic compound attributes are properties regarding the ionic character of the compound.



In this paper, the features used to describe a battery electrode material include the stoichiometric attributes, which are taken
to be the LP norms representing the atomic fraction of the element in the battery electrode as shown in Equation 1 below.
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Adopting from the work of Ward et al., the p = 0 norm (which is equivalent to the number of components) and the p = 2,
3,5, 7, and 10 norms [21]. The stated broad range was selected to create attributes that respond to changes in fractions with
varied strengths.

Other battery electrode specific features include the working ion of the battery electrode, minimum and maximum fraction
of the working ion in the battery electrode, type of metal-ion battery (e.g. intercalation) and spacegroup number. The remaining
input features are the elemental properties obtained from the elemental constituents of the battery electrode adopted from the
work of Joshi et al. that is also founded upon the work of Ward et al. [24]. The stated input features are readily accessible for
any chemical compound with a known crystalline structure, making the model extremely easy to use.

TABLE I: Elemental Input Features

Atomic volume Is Mendeleev GS band gap Is f-block
Atomic number ICSD volume GS effective lattice constant No. of valence
Atomic weight Polarisability GS estimated BCC lattice constant ~ No. of unfilled
Covalent radius BCC energy difference GS estimated FCC lattice constant No. of s valence
Oxidation states BCC effective lattice constant GS magnetic moment No. of d unfilled
Boiling temperature BCC fermi GS volume per atom No. of d valence
Column number BCC magnetic moment Is metal No. of f unfilled
Row number BCC volume per atom difference Is non-metal No. of f valence
First ionization energy BCC volume per atom Is metalloid No. of p unfilled
Space group number Heat capacity mass Is alkali No. of p valence
Density Heat capacity molar Is d-block No. of s unfilled

Table I above states the elemental properties utilised as input features, where body centered cubic is abbreviated as BCC,
ground state as GS, number as No., and Inorganic Crystal Structure Database as ICSD. For each of these elemental properties,
the fraction weighted mean and average deviation are utilized to generate input features using Equation 2 and 3 respectively
as shown below, where p; is the property of element i, z; is the atomic fraction, p is the mean, and p is the average deviation.
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The training data is obtained primarily from the Materials Project, where its database can be readily accessed through a
programming interface called pymatgen [13], [14]. Another open source database, Xenonpy, is also utilised to supplement
features that are otherwise unavailable in pymatgen as Xenonpy provides information from other databases such as mendeleev,

CRC Hand Book and Magpie. From these databases, a total of 4401 data instances were obtained. Table II below shows the
breakdown of the training data with accordance to the type of working ion in the battery electrode.

TABLE II: Training Data

Working Ion Number of Data Percentage of Total Data (%)
Al 149 3.39
Ca 484 11.00
Cs 39 0.89
K 125 2.84
Li 2291 52.06
Mg 393 8.92
Na 328 7.45
Rb 50 1.13
Y 157 3.58
Zn 385 8.75

From Table II, it can be observed that LIB are the majority of the battery electrodes data with 52%. Working ions of Ca,
Mg, Na and Zn takes a sizeable percentage, ranging from 7% to 11% while the working ions of Al, Cs, K, Rb and Y take
a small percentage, ranging from 1% to 4%. The training data then underwent pre-processing, where the categorical input
features (e.g. working ion) were converted to numerical features using one-hot encoding. Given the diverse range of order of
magnitude in the input features, feature scaling in necessary to ensure that gradient descent converges to the minima in an



efficient and smooth manner as well as to reduce model’s biasness for input features based on magnitude. Hence, all numerical
input features were standardized, giving rise to a total of 114 input features for the training data.

B. Hyperparmeter Optimisation

The K-Fold cross validation methodology is utilised for hyperparameter optimisation. The training data is randomly separated
into 10 folds, where 9 folds are used as the training data while the remaining fold is the holdout test set. From the training data,
10% of the data is used as the validation set for model training. The metric utilised to assess the performance of the model
is the mean absolute error (MAE) as defined below in equation 4, where Ytimget and Ypire dicteq are the target and predicted
values for each material ¢ for training data of size V.
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In hyperparameter optimisation, the hyperparameters that are being optimised are the learning rate of the deep neural network,
number of hidden layers and hidden units, weight-decay constant in L2 regularisation, dropout rate as well as batch size. There
are various standard optimisation methods available to optimise the performance metric, which is the mean cross-validation test
set MAE across 10 folds. Grid search exhaustively generates candidates from a grid of parameter values, where all the possible
combinations of parameter values are evaluated and the best combination is retained. On the other hand, randomised search
takes a random sample from a distribution of possible parameter values, which is more beneficial than grid search given that
computational budget can be specified Furthermore, randomised search also ensures that increases in number of parameters
that do not influence the performance does not decrease efficiency.

However, given that evaluating the mean cross-validation test set MAE is computationally expensive, the standard optimisa-
tions methods would take an extremely long time. Hence, a better optimisation method would be Bayesian optimisation using
Gaussian processes, where the function values are assumed to follow a multivariate Gaussian. The covariance of the function
values are given by a Gaussian process kernel between the parameters. Hence an efficient choice for the next parameter to be
evaluate can be made by the acquisition function over the Gaussian prior, which is significantly quicker to evaluate.

TABLE III: Hyperparameters

Hyperparameters Lower Bound Upper Bound Distribution Initial Values Converged Values
No. of Hidden Layers 2 10 Uniform 128 4
No. of Hidden Units 16 512 Uniform 5 398
Weight Decay 10—99 10-3 Log-Uniform 10—98 2.43 x 10~85
Dropout Rate 10—99 0.5 Uniform 1098 0.0142
Learning Rate 10-6 10—t Log-Uniform 10-3 0.00160
Batch Size 16 512 Uniform 128 305
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Fig. 1: Convergence plot of the objective function that outputs the sum of cross-validation test set MAE



Table III highlights the hyperparameters that are optimised, their range of values that are sampled based on their respective
distribution, their initial value as well as the converged values after the optimisation process. The bounds and initial values
are chosen arbitrarily based on common practices (e.g. learning rate, weight decay) as well as computational time for no. of
hidden layers and units. Specifically, the lower bounds of the weight decay and dropout rate were chosen to be approximately
zero (1079%) and initialised to be 10798, This is due to the fact that the neural network is expected to be extremely shallow.
Hence, the regularisation effects of L2 regularisation and dropout would be counter-productive in the training of an effective
model. This is supported by the negligibly small converged values for weight decay and dropout rate of 2.43 x 10735 and
0.0142 respectively. The distribution for learning rate and rate decay are chosen to be of a logarithmic scale to ensure that the
a wider range of values across different order of magnitudes are better represented.

From Figure 1, it can be observed that convergence was achieved with approximately 150 calls, which is significantly faster
than most standard optimisation procedures. From the converged value as shown in Table III, the final values used in for the
hyperparameters for optimised model training are as follows: No. of Hidden Layers = 4, No. of Hidden Units = 400, Weight
Decay = 0, Dropout Rate = 0, Learning Rate = 0.0016 and Batch Size = 300.
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Fig. 2: Pairwise dependence plot of the objective function that outputs the sum of cross-validation test set MAE



Figure 2 shows the pairwise dependence plot of the objective function. The diagonal shows the partial dependence for
the hyperparameters with respect to the objective function. The off-diagonal shows the partial dependence for two different
hyperparameters with respect to the objective function. Pairwise scatter plots of the points at which the objective function was
directly evaluated are shown on the off-diagonal and the red point indicates the best observed minimum.

ITI. RESULTS & DISCUSSION
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Fig. 3: Architecture of deep neural network. x,, are the input features and h,, is the hidden units.

Figure 3 illustrates the architecture of the deep neural network (DNN). The DNN follows a uniform architecture where the
number of hidden units in the each hidden layers are the same till the one node at the output layer which predicts the average
voltage. The training of the DNN follows the exact same procedures utilised in the hyperparameter tuning.

TABLE IV: Model’s performance

Fold DNN (Joshi) SVR KRR DNN
1 0.42 0.51 0.54 0.35
2 0.48 0.25 0.28 0.34
3 0.42 0.26 0.27 0.37
4 0.44 0.35 0.47 0.34
5 0.44 0.38 0.43 0.36
6 0.42 0.62 0.71 0.37
7 0.43 0.43 0.42 0.33
8 0.41 0.59 0.62 0.41
9 0.45 0.53 0.57 0.35
10 0.48 0.28 0.30 0.38

mean MAE =+ standard deviation 0.43 £ 0.03 0.42 £ 0.13 0.46 = 0.14 0.36 = 0.02

Table IV shows the results of the trained DNN against results from the work of Joshi et al., where they compared their
DNN model’s performance with other ML models such as support vector regression (SVR) and kernel ridge regression (KRR)
[24]. SVR is a kernel-based regression technique that operates by mapping nonlinearly separable data in real space to higher
dimensional space through a hyperplane constructed by a kernel function. Similar to SVR, KRR combines ridge regression
(linear least squares with 12-norm regularization) with the kernel trick to map nonlinearly separable data in real space to higher
dimensional space through a hyperplane constructed by a kernel function. In the work of Joshi et al., the models trained using
SVR and KRR underwent hyperparameter optimisation using grid search and are robust alternatives to DNN for complex
datasets. Nevertheless, it can be observed that the trained DNN has the lowest mean MAE relative to other models utilised.
The trained DNN mean MAE of 0.36 is a 16% reduction from the mean MAE of 0.43 of the DNN in the work of Joshi et
al., which is a significant reduction. It can also be seen that the DNN models are generally more consistent given significantly
smaller standard deviation as compared to those of SVR and KRR.



TABLE V: Model’s performance across working ions

Working Ion Number of Data Percentage of Total Data (%) Mean MAE
Al 149 3.39 0.11
Ca 484 11.00 0.10
Cs 39 0.89 0.16
K 125 2.84 0.12
Li 2291 52.06 0.12
Mg 393 8.92 0.38
Na 328 7.45 0.10
Rb 50 1.13 0.15
Y 157 3.58 0.09
Zn 385 8.75 0.13

Table V highlights the model’s performance for each working ion data set. It can be observed that mean MAE for the all
working ions falls within the range of 0.09 - 0.16, with the exception of Mg?* of 0.38. This is an unexpected outcome given
that mean MAE for Rb, which accounts for 1.13% of the data set is approximately similar to that of Li, which accounts for
52.06% of the data set. A plausible explanation for such a discrepancy could potentially be due to significantly commonality
between working ion’s data other than Mg?*. As a result, the model learned weights geared to minimize the MAE favouring
the majority of the working ions, which happened to perform relatively poorly for Mg?*.

Despite the consistent performance of the trained DNN, the true challenge for it would be to gauge its performance from a
completely new data set with labels based on experimentally determined voltage values instead of the average voltage obtained
from Materials Project. This is necessary to ensure the transferability and robustness of the trained DNN. Table VI shows the
trained model predictions against the DNN model on selected experimental data from the work of Joshi et al. [24].

TABLE VI: Model’s performance on experimental data

Electrode DNN (Joshi) DNN Experimental Absolute Error Absolute Error
(Joshi)

NaMnO, 2.98 2.92 2.75¢ 0.23 0.17
NaCoO, 3.40 3.10 2.80° 0.60 0.30
NaTiO, 1.79 1.21 >1.500 0.29 0.29
NaNiO, 3.61 3.05 3.00° 0.61 0.05
NaFePOy4 2.95 4.06 3.00° 0.05 1.06
NaFe( 5Co050; 3.58 3.16 3.144 0.44 0.02
NazMnV(POy)3 342 3.14 3.00¢ 0.42 0.14
MAE (Na) 0.38 0.29
LiCoO, 3.60 3.98 4.10° 0.50 0.12
LiFePOy4 3.36 4.26 3.50° 0.14 0.76
LiNiO, 3.81 3.88 3.85% 0.04 0.03
MAE (Li) 0.23 0.30
Mg, MogSg 1.09 1.48 1.30/ 0.21 0.18
Mg 55 TiSe, 1.63 0.83 1.458 0.18 0.62
MgMoOs3 2.20 343 2.25" 0.05 1.18
MAE (Mg) 0.15 0.66
Ki¢NayMn3 07 2.74 3.15 2.20°¢ 0.54 0.95
MAE (All) 0.31 0.42

* aTaken from ref [25]. ®Taken from ref [26]. “Taken from ref [27]. “Taken from ref [28]. ¢Taken from ref [29]. /Taken from ref [30]. 8 Taken from ref [31]
"Taken from ref [32].

From Table VI, it can be observed that the trained model’s performance on the experimental data has deteriorated slightly
relative to its test set performance as shown in Table IV. On the other hand, the DNN model from the work of Joshi et al.
performed slightly better on the experimental data relative to its test set performance. Upon further inspection, it would appear
than the trained model’s poorer performance on Mg?* is also evident given its performance from the Mg+ experimental data.
Furthermore, it can be seen that the standard deviation of MAE of the trained model is larger than that from the DNN from
Joshi et al.. In particular, it can be observed that the absolute error for some anomalous electrodes (e.g. NaFePO,, MgMoO3,
LiFePO4, Mg ssTiSe,, K;¢Na;Mn3;O7) have absolute errors close to 1 or above while the absolute errors for Joshi et al.
are significantly smaller. Hence, this could be an indication of potential overfitting in the trained model where the potential
corrections include regularisation techniques such as L2 regularisation and weight decay discussed previously. However, given
such a small sample of experimental data with 14 data points where the working ions are mainly Na, Li and Mg, the respective



models’ performance cannot be fully ascertained. A potential hypothesis for the anomalous results stated before would be that
the anomalies are a result of an inherent trade off that the model made in order to improve its performance in general for a
wider scope of electrodes of varying working ions and anions at the expense of significantly poorer performance for a smaller
and more specific subsets of electrodes (e.g. electrodes with anions of FePO,  or Mg?* working ions). This is corroborated by
the at minimum equivalent or significantly better performance of the trained model for the other experimental electrodes relative
to the to the model from from Joshi et al (e.g. NaNiO,, NaFej5Co¢50,, LiCoO;) as well as the result shown in Table IV. As
a result, future studies on a larger and more diverse data set on novel experimental electrodes is necessary to fully evaluate the
model’s performance and ascertain the stated hypothesis above in order to decide the best methods in improving the model.

IV. CONCLUSION

In conclusion, this project utilises DNN to train a model capable of predicting the voltage of battery electrodes using
materials data that are primarily extracted from the Material’s Project. A prediction can be obtained using readily available
basic information: working ion of the battery electrode, minimum and maximum fraction of the working ion in the battery
electrode, type of metal-ion battery (e.g. intercalation) and spacegroup number. The remaining input are the elemental properties
obtained from the elemental constituents of the battery electrode, making the model simple and efficient compared to DFT
methods. Hence, the trained model from this project can be used to rapidly shortlist potential high performing battery electrodes
for further experimentation, streamlining the research and development process in this field. However, further improvements
must be made to the existing model to improve the model’s performance for application in reality. Potential improvements
would include training with a larger data sets, exploring different ML algorithms and input features. As such, many unexplored
possibilities and potential lies in the ML approach as room for further research and development.
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